ICU Patient Deterioration prediction: a Data-Mining Approach
نویسندگان
چکیده
A huge amount of medical data is generated every day, which presents a challenge in analysing these data. The obvious solution to this challenge is to reduce the amount of data without information loss. Dimension reduction is considered the most popular approach for reducing data size and also to reduce noise and redundancies in data. In this paper, we investigate the effect of feature selection in improving the prediction of patient deterioration in ICUs. We consider lab tests as features. Thus, choosing a subset of features would mean choosing the most important lab tests to perform. If the number of tests can be reduced by identifying the most important tests, then we could also identify the redundant tests. By omitting the redundant tests, observation time could be reduced and early treatment could be provided to avoid the risk. Additionally, unnecessary monetary cost would be avoided. Our approach uses state-of-the-art feature selection for predicting ICU patient deterioration using the medical lab results. We apply our technique on the publicly available MIMIC-II database and show the effectiveness of the feature selection. We also provide a detailed analysis of the best features identified by our approach.
منابع مشابه
Early Deterioration Warning for Hospitalized Patients by Mining Clinical Data
Data mining on medical data has great potential to improve the treatment quality of hospitals and increase the survival rate of patients. Every year, 4--17%of patients undergo cardiopulmonary or respiratory arrest while in hospitals. Early prediction techniques have become an apparent need in many clinical areas. Clinical study has found early detection and intervention to be essential for prev...
متن کاملCustomer Retention Based on the Number of Purchase: A Data Mining Approach
Purpose: this study wants to find any relationship between the numbers of purchase and the income the customer brings to the company. The attempt is to find those customers who buy more than one life insurance policy and represent the signs of good payments at the same time by the help of data mining tools. Design/ methodology/ approach: the approach of this research is to use data mining tools...
متن کاملA data mining approach to employee turnover prediction (case study: Arak automotive parts manufacturing)
Training and adaption of employees are time and money consuming. Employees’ turnover can be predicted by their organizational and personal historical data in order to reduce probable loss of organizations. Prediction methods are highly related to human resource management to obtain patterns by historical data. This article implements knowledge discovery steps on real data of a manufacturing pla...
متن کاملReal-Time Data Mining Models for Predicting Length of Stay in Intensive Care Units
Nowadays the efficiency of costs and resources planning in hospitals embody a critical role in the management of these units. Length Of Stay (LOS) is a good metric when the goal is to decrease costs and to optimize resources. In Intensive Care Units (ICU) optimization assumes even a greater importance derived from the high costs associated to inpatients. This study presents two data mining appr...
متن کاملPrediction of Status Patterns of Wind Turbines: A Data-Mining Approach
This paper presents the application of data-mining techniques for identification and prediction of status patterns in wind turbines. Early prediction of status patterns benefits turbine maintenance by indicating the deterioration of components. An association rule mining algorithm is used to identify frequent status patterns of turbine components and systems that are in turn predicted using his...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1511.06910 شماره
صفحات -
تاریخ انتشار 2015